
Flow of a compressible 
fluid 

Fluids have the capacity to change volume and density, i.e. compressibility. 
Gas is much more compressible than liquid. 

Since liquid has low compressibility, when its motion is studied its density 
is normally regarded as unchangeable. However, where an extreme change in 
pressure occurs, such as in water hammer, compressibility is taken into 
account. 

Gas has large compressibility but when its velocity is low compared with 
the sonic velocity the change in density is small and it is then treated as an 
incompressible fluid. 

Nevertheless, when studying the atmosphere with large altitude changes, 
high-velocity gas flow in a pipe with large pressure difference, the drag 
sustained by a body moving with significant velocity in a calm gas, and the 
flow which accompanies combustion, etc., change of density must be taken 
into account. 

As described later, the parameter expressing the degree of compressibility 
is the Mach number M.  Supersonic flow, where M > 1, behaves very 
differently from subsonic flow where M < 1. 

In this chapter, thermodynamic characteristics will be explained first, 
followed by the effects of sectional change in isentropic flow, flow through a 
convergent nozzle, and flow through a convergentdivergent nozzle. Then the 
adiabatic but irreversible shock wave will be explained, and finally adiabatic 
pipe flow with friction (Fanno flow) and pipe flow with heat transfer 
(Rayleigh flow). 

Now, with the specific volume v and density p,  

pv= 1 (13.1) 

A gas having the following relationship between absolute temperature T 
and pressure p 

pv = RT (13.2) 
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or 
p =  RpT (13.3) 

is called a perfect gas. Equations (13.2) and (13.3) are called its equations of 
state. Here R is the gas constant, and 

where R, is the universal gas constant (R, = 8314J/(kgK)) and A is the 
molecular weight. For example, for air, assuming A = 28.96, the gas 
constant is 

R=-- 8314 - 287 J/(kg K) = 287 m2/(s2 K) 
28.96 

Then, assuming internal energy and enthalpy per unit mass e and h 
respectively, 

specific heat at constant volume: c, = (g) de = c,dT 

Specific heat at constant pressure: c, = (g) dh = cpdT 

(13.4) 

(13.5) 

L: 

P 

Here 

h = e + p v  (13.6) 

According to the first law of thermodynamics, when a quantity of heat dq 
is supplied to a system, the internal energy of the system increases by de, and 
work p dv is done by the system. In other words, 

dq = de + pdv (1 3.7) 

From the equation of state (13.2), 

pdv + vdp = R d T  (13.8) 

From eqn (13.6), 

dh = de + p dv + vdp (1 3.9) 

Now, since dp = 0 in the case of constant pressure change, eqns (13.8) 

pdv = R d T  (1 3.10) 

(13.1 1) 

and (1 3.9) become 

dh = de+pdv = dq 

Substitute eqns (13.4), (13.5), (13.10) and (13.11) into (13.7), 

c , d T = c , d T + R d T  

which becomes 

cP - C, = R 

Now, c,/c, = k (k: ratio of specific heats (isentropic index)), so 

(1 3.12) 
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cp = - k R  k-1 

C" = - ' R  k-1 

(1 3.1 3) 

(1 3.14) 

Whenever heat energy dq is supplied to a substance of absolute 
temperature T, the change in entropy ds of the substance is defined by the 
following equation: 

ds = dq/T ( 1 3.1 5) 

As is clear from this equation, if a substance is heated the entropy 
increases, while if it is cooled the entropy decreases. Also, the higher the gas 
temperature, the greater the added quantity of heat for the small entropy 
increase. 

Rewrite eqn (13.15) using eqns (13.1), (13.2), (13.12) and (13.13), and the 
following equation is obtained:' 

9 = c, d(1og puk)  
T 

( 1 3.1 6) 

When changing from state ( p l ,  u I )  to state ( p 2 ,  u2), if reversible, the change 
in entropy is as follows from eqns (1 3.15) and (1 3.16): 

s2 - s, = C" logpJ (13.17) 

In addition, the relationships of eqns (13.18)-(13.20) are also obtained.2 

' From 
dp dv d T  
p + y = r  pv = R T  

Therefore 

' Equations (13.18), (13.19) and (13.20) are respectively induced from the following equations: 

& - = c  dq - - R - = c c , - - ( k - l ) c  d T  dp d T  - dP 
T " T p  T OP 
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s2 - s1 = 
T , f i  ( , ; ," l ]  

s2 - s1 = c"log[ (9k(;)k-1] 
s2 - s1 = culog[y' 

P1 P2 

( 1 3.1 8) 

(1 3.19) 

( 1 3.20) 

for the reversible adiabatic (isentropic) change, ds = 0. Putting the pro- 
portional constant equal to c, eqn (13.17) gives (13.21), or eqn (13.22) from 
(1 3.20). That is, 

k p v  = c  

p = cpk 

(13.21) 
(1 3.22) 

Equations (13.18) and (13.19) give the following equation: 
T = Cpk-l  = cp(k-l)/k 

When a quantity of heat AQ transfers from a high-temperature gas at 
to a low-temperature gas at 5, the changes in entropy of the respective gases 
are -AQ/T, and A Q I S .  Also, the value of their sum is never negat i~e.~ Using 
entropy, the second law of thermodynamics could be expressed as 'Although 
the grand total of entropies in a closed system does not change if a reversible 
change develops therein, it increases if any irreversible change develops.' This 
is expressed by the following equation: 

ds 2 0 ( 1 3.24) 

(13.23) 

Consequently, it can also be said that 'entropy in nature increases'. 

It is well known that when a minute disturbance develops in a gas, the 
resulting change in pressure propagates in all directions as a compression 
wave (longitudinal wave, pressure wave), which we feel as a sound. Its 
propagation velocity is called the sonic velocity. 

Here, for the sake of simplicity, assume a plane wave in a stationary fluid 
in a tube of uniform cross-sectional area A as shown in Fig. 13.1. Assume 
that, due to a disturbance, the velocity, pressure and density increase by u, dp 
and dp respectively. Between the wavefront which has advanced at sonic 
velocity a and the starting plane is a section of length I where the pressure has 
increased. Since the wave travel time, during which the pressure increases in 
this section, is t = l /a,  the mass in this section increases by Aldplt = Aadp 

' In a reversible change where an ideal case is assumed, the heat shifts between gases of equal 
temperature. Therefore, ds = 0. 
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Fig. 13.1 Propagation of pressure wave 

per unit time. In order to supplement it, gas of mass Au(p + dp) = Aup flows 
in through the left plane. In other words, the continuity equation in this case 
is 

Aadp = Aup 

or 

adp  = up (1 3.25) 

The fluid velocity in this section changes from 0 to u in time t. In other words, 
the velocity can be regarded as having uniform acceleration u/ t  = ua/l .  
Taking its mass as Alp and neglecting dp in comparison with p, the equation 
of motion is 

ua 
1 

Alp- = Adp 

or 

pau = dp (13.26) 

Eliminate u in eqns (1 3.25) and (1 3.26), and 

a = J d p l d p  (13.27) 

is obtained. 
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Since a sudden change in pressure is regarded as adiabatic, the following 

a = J k R T  (13.28) 

In other words, the sonic velocity is proportional to the square root of 
absolute temperature. For example, for k = 1.4 and R = 287m2/(s2 K), 

equation is obtained from eqns (13.3) and (13.23):4 

a = 20./7; (a = 340m/s at 16°C (289 K)) (1 3.29) 

Next, if the bulk modulus of fluid is K, from eqns (2.13) and (2.19, 

dv dp 
V P 

dp = -K-  = I(- 

and 

dP - K 
dP P 
- -  - 

Therefore, eqn (13.27) can also be expressed as follows: 

a = m  ( 1 3.30) 

The ratio of flow velocity u to sonic velocity a, i.e. M = u/a,  is called Mach 
number (see Section 10.4.1). Now, consider a body placed in a uniform flow 
of velocity u. At the stagnation point, the pressure increases by Ap = pU2/2 
in approximation of eqn (9.1). This increased pressure brings about an 
increased density Ap = Ap/a2 from eqn (1 3.27). Consequently, 

(13.31) 

In other words, the Mach number is a non-dimensional number expressing 
the compressive effect on the fluid. From this equation, the Mach number M 
corresponding to a density change of 5% is approximately 0.3. For this 
reason steady flow can be treated as incompressible flow up to around Mach 
number 0.3. 

Now, consider the propagation of a sonic wave. This minute change in 
pressure, like a sound, propagates at sonic velocity a from the sonic source in all 
directions as shown in Fig. 13.2(a). A succession of sonic waves is produced 
cyclically from a sonic source placed in a parallel flow of velocity u. When u is 
smaller than a, as shown in Fig. 13.2(b), i.e. if M < 1, the wavefronts propagate 
at velocity a - u upstream but at velocity a + u downstream. Consequently, 
the interval between the wavefronts is dense upstream while being sparse 

p = ep', dp/dp = ekpk-' = k p / p  = kRT 
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Fig. 13.2 Mach number and propagation range of a sonic wave: (a) calm; (b) subsonic (M < 1); (c) 
sonic (M = 1); (d) supersonic (M > 1) 

downstream. When the upstream wavefronts therefore develop a higher 
frequency tone than those downstream this produces the Doppler effect. 

When u = a, i.e. M = 1, the propagation velocity is just zero with the 
sound propagating downstream only. The wavefront is now as shown in Fig. 
13.2(c), producing a Mach wave normal to the flow direction. 

When u > a, i.e. M > 1, the wavefronts are quite unable to propagate 
upstream as in Fig. 13.2(d), but flow downstream one after another. The 
envelope of these wavefronts forms a Mach cone. The propagation of sound 
is limited to the inside of the cone only. If the included angle of this Mach 
cone is 201, then5 

sina = a/u = 1/M (13.32) 

is called the Mach angle. 

For a constant mass flow m of fluid density p flowing at velocity u through 
section area A ,  the continuity equation is 

5 Actually, the three-dimensional Mach line forms a cone, and the Mach angle is equal to its 
semi-angle. 
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m = puA = constant (1 3.33) 

or by logarithmic differentiation 
dp du dA -+-+-=o 
P u A  

Euler’s equation of motion in the steady state along a streamline is 

or 

J f + u2 = constant 

Assuming adiabatic conditions from p = cpk, 

Substituting into eqn (13.35), 
1 

k - l p  2 
-- P + -u2 = constant 

( 1 3.34) 

(13.35) 

(13.36) 

or 

(13.37) 
k 1 - R T  + - u2 = constant 

k - 1  2 
Equations (13.36) and (13.37) correspond to Bernoulli’s equation for an 
incompressible fluid. 

If fluid discharges from a very large vessel, u = u, x 0 (using subscript 0 
for the state variables in the vessel), eqn (1 3.37) gives 

1 k 
- R T + ~ = -  RT, 

k 
k - 1  2 k - 1  

or 

M 2  
1 k - l d  k - 1  

- +---= R T  k 2 +T- 
T, 
T -  
- (1 3.38) 

l k - 1 u 2  
R k 2  In this equation, T,, T and 

perature, the static temperature and the dynamic temperature. 

are respectively called the total tem- 

From eqns (13.23) and (13.38), 

(1 3.39) 

This is applicable to a body placed in the flow, e.g. between the stagnation 
point of a Pitot tube and the main flow. 

Correction to a Pitot tube (see Section 11.1.1) 
Putting pm as the pressure at a point not affected by a body and making a 
binomial expansion of eqn (1 3.39), then (in the case where M < 1) 
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Table 13.1 Pitot tube correction 

M 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

(po -p rn ) / fp~*  = C  

Relative error of 0 0.15 0.50 1.14 2.03 3.15 4.55 6.25 8.17 
1.000 1.003 1.010 1.023 1.041 1.064 1.093 1.129 1.170 

u = (& - 1) x 100% 

~6 + A) 
- (13.40)6 

24 M4 + A) 

For an incompressible fluid, po = pm + ipu2. Consequently, for the case when 
the compressibility of fluid is taken into account, the correction appearing 
in Table 13.1 is necessary. 

From Table 13.1, it is found that, when M = 0.7, the true flow velocity is 
approximately 6% less than if the fluid was considered to be incompressible. 

13.5.1 Flow in a pipe (Effect of sectional change) 

Consider the flow in a pipe with a gradual sectional change, as shown in 
Fig. 13.3, having its properties constant across any section. For the fluid at 
sections 1 and 2 in Fig. 13.3, 

continuity equation: (1 3.41) dp du dA 
--+-+-=(I 
P U A  

equation of momentum conservation: (1 3.42) 
isentropic relationship: p = cpk (1 3.43) 

(1 3.44) 

- dp A = (Apu)du 

dP sonic velocity: a2 = - 
dP 

From eqns (13.41), (13.42) and (13.44), 
du 

- a’dp = pudu = pu2- 
U 

6 

p m k M 2  = p , k ,  u2 = p ~ = &  ku2 2 - 
a “ k R T  R T U  -”‘ 
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Fig. 13.3 Flow in pipe with gentle sectional change 

Therefore 

(1 3.45) 
du dA 
u A  

( M 2  - 1)-  = - 

or 

(13.46) 1 u  du 
dA- M 2  - 1 A 

- - ~- 

Also, 

(1 3.47) 
du 

P U 
- - - M 2 -  dP - 

Therefore, 

-$! /$=M’ (13.48) 

From eqn (13.46), when M < 1 ,  du/dA < 0, Le. the flow velocity decreases 
with increased sectional area, but when M > 1, -dp/p > du/u, i.e. for 
supersonic flow the density decreases at a faster rate than the velocity 
increases. Consequently, for mass continuity, the surprising fact emerges that 
in order to increase the flow velocity the section area should increase rather 
than decrease, as for subsonic flow. 

Table 13.2 Subsonic flow and supersonic flow in one-dimensional isentropic flow 
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From eqn (13.47), the change in density is in reverse relationship to the 
velocity. Also from eqn (13.23), the pressure and the temperature change in a 
similar manner to the density. The above results are summarised in Table 
13.2. 

13.5.2 Convergent nozzle 

Gas of pressure po, density po and temperature T, flows from a large vessel 
through a convergent nozzle into the open air of back pressure pb 
isentropically at velocity u, as shown in Fig. 13.4. Putting p as the outer plane 
pressure, from eqn (1 3.36) 

u2 k P k Po -+-- - - -- 
2 k - l p  k - l p o  

Using eqn (1 3.23) with the above equation, 

. = j m  2-- k - l p o  (13.49) 

Therefore, the flow rate is 

Fig. 13.4 Flow passing through convergent nozzle 
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Writing p / p o  = x, then 

(1 3.51) 

When p / p o  has the value of eqn (13.51), m is maximum. The corresponding 
pressure is called the critical pressure and is written as p*.  For air, 

p * / p o  = 0.528 (13.52) 

Using the relationship between m and p / p o  in eqn (13.50), the maximum 
flow rate occurs when p / p o  = 0.528 as shown in Fig 13.4(b). Thereafter, 
however much the pressure pb downstream is lowered, the pressure there 
cannot propagate towards the nozzle because it is discharging at sonic 
velocity. Therefore, the pressure of the air in the outlet plane remains p*,  and 
the mass flow rate does not change. In this state the flow is called choked. 

Substitute eqn (13.51) into (13.49) and use the relationship p o / p !  = p/pk 
to obtain .*=E=. (13.53) 

In other words, for M = 1, under these conditions u is called the critical 
velocity and is written as u*. At the same time 

( 1 3.54) 

(13.55) 

The relationships of the above equations (13.52), (13.54) and (13.55) show 
that, at the critical outlet state M = 1, the critical pressure falls to 52.5% of 
the pressure in the vessel, while the critical density and the critical 
temperature respectively decrease by 37% and 17% from those of the vessel. 

13.5.3 Convergent4ivergent nozzle 

A convergent-divergent nozzle (also called the de Lava1 nozzle) is, as shown 
in Fig. 13.5,7 a convergent nozzle followed by a divergent length. When back 
pressure Pb outside the nozzle is reduced below po,  flow is established. So long 
as the fluid flows out through the throat section without reaching the critical 
pressure the general behaviour is the same as for incompressible fluid. 

When the back pressure decreases further, the pressure at the throat section 

’ Liepmann, H. W. and Roshko, A,, Elements of Gasdynamics, (1975), 127, John Wiley, New 
York. 
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Fig. 13.5 Compressive fluid flow passing through divergent nozzle 

reaches the critical pressure and M = 1; thereafter the flow in the divergent 
port is at least initially supersonic. However, unless the back pressure is low 
enough, supersonic velocity cannot be maintained. Instead, a shock wave 
develops, after which the flow becomes subsonic. As the back pressure is 
replaced, the shock moves further away from the diverging length to the exit 
plane and eventually disappears, giving a perfect expansion. 

A real ratio A/A*  between the outlet section and the throat giving this 
perfect expansion is called the area ratio, and, using eqns (13.50) and 
(13.51), 

A A* = ( & ) l ’ ( k - l ) ( ~ ) l ’ ~ ~ ~  1 -  - (13.56) 

When air undergoes large and rapid compression (e.g. following an 
explosion, the release of engine gases into an exhaust pipe, or where an 
aircraft or a bullet flies at supersonic velocity) a thin wave of large pressure 
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Fig. 13.6 Jet plane flying at supersonic velocity 

change is produced as shown in Figs 13.6 and 13.7. Since the state of gas 
changes adiabatically, an increased temperature accompanies this increased 
pressure. As shown in Fig. 13.8(a), the wave face at the rear of the com- 
pression wave, being at a higher temperature, propagates faster than the 
wave face at the front. The rear therefore gradually catches up with the front 
until finally, as shown in Fig. 13.8(b), the wave faces combine into a thin 
wave increasing the pressure discontinuously. Such a pressure discontinuity is 
called a shock wave, which is only associated with an increase, rather than a 
reduction, in pressure in the flow direction. 

Since a shock wave is essentially different from a sound wave because of 
the large change in pressure, the propagation velocity of the shock is larger, 
and the larger the pressure rise, the greater the propagation velocity. 

Fig. 13.7 Cone flying at supersonic velocity (Schlieren method) in air, Mach 3 



232 Flow of a compressible fluid 

Fig. 13.8 Propagation of a compression wave 

If a long cylinder is partitioned with Cellophane film or aluminium foil to 
give a pressure difference between the two sections, and then the partition is 
ruptured, a shock wave develops. The shock wave in this case is at right 
angles to the flow, and is called a normal shock wave. The device itself is 
called a shock tube. 

As shown in Fig. 13.9, the states upstream and downstream of the shock 
wave are respectively represented by subscripts 1 and 2. A shock wave Ax is 
so thin, approximately micrometres at thickest, that it is normally regarded 
as having no thickness. 

Now, assuming A ,  = A,, the continuity equation is 

PI% = P2U2 (13.57) 

the equation of momentum conservation is 

PI + P I 4  = P2 + P 2 d  (13.58) 

and the equation of energy conservation is 

Fig. 13.9 Normal shock wave 
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or 

(1 3.59) 

From eqns (13.57) and (13.58), 

(1 3.60) P2 - PI P2 

P2 -PI P1 
u: =-- 

(13.61) 

(1 3.62) 

(1 3.63) 

Equations (13.62) and (13.63), which are called the Rankine-Hugoniot 
equations, show the relationships between the pressure, density and 
temperature ahead of and behind a shock wave. From the change of entropy 
associated with these equations it can be deduced that a shock wave develops 
only when the upstream flow is supersonic.8 

It has already been explained that when a supersonic flow strikes a 
particle, a Mach line develops. On the other hand, when a supersonic flow 
flows along a plane wall, numerous parallel Mach lines develop as shown in 
Fig. 13.10(a). 

When supersonic flow expands around a curved wall as shown in Fig. 
13.10(b), the Mach waves rotate, forming an expansion ‘fan’. This flow is 
called a Prandtl-Meyer expansion. 

In Fig. 13.10(c), a compressive supersonic flow develops where numerous 
Mach lines change their direction, converging and overlapping to develop a 
sharp change of pressure and density, i.e. a shock wave. 

* From eqns (13.57) and (13.58),  

! ? , i + - ( M ; - I )  2k 
k + l  PI 

Likewise 
2k E =  1 + - ( M :  - 1) 

P2 k + l  
Therefore 

2 + ( k -  1 )M:  
2 k M :  - ( k  - 1)  

M :  = 
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(d) 
.....- 

(c) 

Fig. 13.10 Supersonic flow along various wave shapes 

Figure 13.10(d) shows the ultimate state of a shock wave due to supersonic 
flow passing along this concave wall. Here, 6 is the deflection angle and g is 
the shock wave angle. 

A shock wave is called a normal shock wave when cr = 90" and an oblique 
shock wave in other cases. 

From Fig. 13.11, the following relationships arise between the normal 
component u, and the tangential component u, of the flow velocity through 
an oblique shock wave: 

Fig. 13.11 Velocity distribution in front of and behind an oblique shock wave 
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Ult  = U ]  coso u,,, = u,  sin o 
u2,, = u2 sin(o - 6) uZ1 = u2 cos(a - 6) 

(1 3.64) 

From the momentum equation in the tangential direction, since there is no 
pressure gradient, 

Ult  = u21 (1 3.65) 

From the momentum equation in the normal direction, 

( 1 3.66) 

This equation is in the same form as eqn (13.59), and the Rankine- 
Hugoniot equations apply. When combined with eqn (1 3.64), the following 
relationship is developed between 6 and o: 

k + l  M :  

2 2k P2 

k - 1  Pz  
u:, - UZn = - (- - 2) 

) - 1 tano (1 3.67) 

When the shock angle 0 = 90" and o = sin-'(l/M,), 6 = 0 so the maximum 
value 6, of 6 must lie between these values. 

The shock wave in the case of a body where 6 < 6, (Fig. 13.12(a)) is 
attached to the sharp nose A .  In the case of a body where 6 > 6, (Fig. 
13.12(b)), however, the shock wave detaches and stands off from nose A .  

cos6 = (- 
2 Mysin'o- 1 

Fig. 13.12 Flow pattern and shock wave around body placed in supersonic flow: (a) shock wave 
attached to wedge; (b) detached shock wave 

Since an actual flow of compressible fluid in pipe lines and similar conduits 
is always affected by the friction between the fixed wall and the fluid, it can 
be adiabatic but not isentropic. Such an adiabatic but irreversible (i.e. non- 
isentropic) flow is called Fanno flow. 

Alternatively, in a system of flow forming a heat exchanger or combustion 
process, friction may be neglected but transfer of heat must be taken into 
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Fig. 13.13 Fanno line and Rayleigh line 

account. Such a flow without friction through a pipe with heat transmission 
is called Rayleigh flow. 

Figure 13.13 shows a diagram of both of these flows in a pipe with fixed 
section area. The lines appearing there are called the Fanno line and Rayleigh 
line respectively. For both of them, points a or b of maximum entropy 
correspond to the sonic state M = 1. The curve above these points 
corresponds to subsonic velocity and that below to supersonic velocity. 

The states immediately ahead of and behind the normal shock wave are 
expressed by the intersection points 1 and 2 of these two curves. For the flow 
through the shock wave, only the direction of increased entropy, i.e. the 
discontinuous change, 1 + 2 is possible. 

1. When air is regarded as a perfect gas, what is the density in kg/m3 of 

2. Find the velocity of sound propagating in hydrogen at 16°C. 

3. When the velocity is 30m/s, pressure 3.5 x 105Pa and temperature 
150°C at a point on a streamline in an isentropic air flow, obtain the 
pressure and temperature at the point on the same streamline of velocity 
100m/s. 

4. Find the temperature, pressure and density at the front edge (stagnation 
point) of a wing of an aircraft flying at 900 km/h in calm air of pressure 
4.5 x lo4 Pa and temperature -26°C. 

air at 15°C and 760 mm Hg? 
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5 .  From a Schlieren photograph of a small bullet flying in air at 15°C and 
standard atmospheric pressure, it was noticed that the Mach angle was 
50". Find the velocity of this bullet. 

6. When a Pitot tube was inserted into an air flow at high velocity, the 
pressure at the stagnation point was 1 x 105Pa, the static pressure was 
7 x 104Pa, and the air temperature was -10°C. Find the velocity of this 
air flow. 

7. Air of gauge pressure 6 x 104Pa and temperature 20°C is stored in a 
large tank. When this air is released through a convergent nozzle into air 
of 760 mm Hg, find the flow velocity at the nozzle exit. 

8. Air of gauge pressure 1.2 x lo5 Pa and temperature 15°C is stored in a 
large tank. When this air is released through a convergent nozzle of exit 
area 3 cm2 into air of 760 mm Hg, what is the mass flow? 

9. Find the divergence ratio necessary for perfectly expanding air under 
standard conditions down to 100 mm Hg absolute pressure through a 
convergent-divergent nozzle. 

10. The nozzle for propelling a rocket is a convergent-divergent nozzle of 
throat cross-sectional area 500cm2. Regard the combustion gas as a 
perfect gas of mean molecular weight 25.8 and IC = 1.25. In order to 
make the combustion gas of pressure 32 x lo5 Pa and temperature 
3300K expand perfectly out from the combustion chamber into air of 
1 x lo5 Pa, what should be the cross-sectional area at the nozzle exit? 

11. When the rocket in Problem 10 flies at an altitude where the pressure is 
2 x lo4 Pa, what is the obtainable thrust from the rocket? 

12. A supersonic flow of Mach 2, pressure 5 x 104Pa and temperature 
-15°C develops a normal shock wave. What is the Mach number, flow 
velocity and pressure behind the wave? 


